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1. An exact solution in closed form of the problem of the detached flow 

past one of the family of curves L(~I, v) was given by Pykhteev [ 11. In 

this article we consider the impact upon the same family of curves of the 

detached streamlined flow of indefinite extent of an ideal incompressible 

fluid. 

The curve L(m, v) which is a function of two parameters I and v is 

assumed to be in the plane of the flow z = x + iy. It is given in the 

form of the parametric equation 

1 + VI - ctg2 Y tg2 0 cos a da 

(1.1) 

9 
1 + VI - rtg*vg% sin ad3 

,,, ~ [l + v 1 - ctg2 v tg” 0 sin vJtn cosm +“O 

Fig. 1. 

where 8 is the angle of the tangent line to the r-axis. which varies 

between 0 < n/2 - 6 < mu where 0 < v < n/2 I. The curve L(n, v) with 
v f 0 is increasing monotonically. It is symmetrical with respect to the 
x-axis, passes through the origin of the coordinate system, and is tangent 

to y-axis. When v = 0 the curve L(n, v) becomes a segment of a straight 
line, coincident with the y-axis (Fig. 1). At the end point of the curve 
C(X, Y) the angle 

the length of the 
equation (1.1) is 

of inclination of the tangent line is 8 = n/2 - mu, and 
arc is S. For every curve L(r, v) the parameter x in 
determined when one of the three quantities X, Y or S 

827 



828 S. I. Parkhomovski i 

is given. The integrals in (1.1) for all integral and for many fractional 

values of II are expressible in terms of elementary or tabulated functions. 

It is easy to determine the ccrvature of the curve: 

d9 
K(8) =ds = 

m tg v 11 + 1/l - ctg’v tga e sin3 C0sm+2e 9 C, c N 
=-p 

h COPV 1 + 1/l - ctg” v tg2 0 -1 1 - e 

(1.2) Fig. 2. 

2. Let the curve L(r, v), which forms a boundary of a detached flow, 

suddenly acquire the translational velocity v(v2, v,) and the rotational 

velocity o wfth respect to the point 0. The resulting additional (im- 

pulsive) flow has a complex velocity potential w = 4 + it/, where $ de- 

pends upon the density of the fluid p and the impulsive pressure p through 

the relationship p = - p~$. The harmonic function $(x, y) satisfies the 

boundary conditions: at the free surfaces p = 0, consequently, $J = 0; at 

the curve L(B, u) the normal component of the velocity J+/Jn = vn is 

knownk where in the case under consideration 

(2.1) 

Furthermore, from physical considerations it follows that the complex 

velocity of the impulsive flow dw/dz becomes infinite at the ends of the 

curve and is equal to zero in the stream at infinity. 

We shall transform the region of the flow of the plane (2) conformally 

into the upper half-plane of the parametric variable u = 5 + iv (Fig. 2). 

The corresponding points in Figs. 1 and 2 are denoted by the same letters. 

The transformation is derived from the paper [II and in our notation it 

is written 

- -1-(1/l - ua + iu) tg’/2v 
g = hi (1 + 1/i - UZ) +=V---- m 

i+(v/l-uUB+ iu) tg’/av 1 (2.2) 

The boundary conditions, expressed in terms of the function ds/du, in 

the plane u correspondingly will be in the form: 

Red? = 0, 
du 

lSl>i* q=o 

Inl d”=__y 
du n du ’ I I 

dz 151<1. q=o 

(2.3) 

Furthermore, dv/du must at the ends of the contour u = f 1 become in- 

finite of the order minus one-half, and at infinity it must be zero not 

lower than of the second order. The analytical function dw/du in the 

upper half-plane (u) is found by the methods of the theory of thin wing 
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and of the impact upon the incompressible fluid [ 21 : 

dw -=__-!_.- 5 k,(u) Ig]]u_EedE (2.5) 
du xi vua-1 _-l 

Fig. 3. 

where 1 dz/du 1 and 8 is determined from (2.2) for 

-1<u<1: 

dz I I du= 
h (1 + 1/l - u’) 

[ 

I--vi-uasinv IAm 
-- 
1 + ‘r/l -u*sinv 1 (26) 

4 = srg $ = $ 5c - m arc tg (24 tg v) (2.7) 

and X(U), y(u) are found from (1.1) and (2.7). In 

such a manner, the formulas (2.5) and (l.l), (2.1>, 

(2.6). (2.7) yield the general solution of the 

problem. 

Making use of the fact that vn is expressible 

linearly in terms of vl, v2 and o it is convenient 

to express the desired potential in the form 

w = VlWl + v2wt + 0tL’g (wk = ‘pk + i#k) (2.8) 

where wl, w2, w3 are the complex potentials of 

the vertical, horizontal and the rotational im- 

pacts with unit velocities. 

3. At the time of the impact on the element ds of the curve there are 

acting the elemental impulse d J and the moment dM with respect to the 

point 0 (Fig. 1): 

dJ=pdsn=-ipdssin$+ jpdscos8=-ipdy+ jpdx 

dM=IrXpdsnI=pds(xcos8+ysin8)=p(xdx+ydy)=$pd(zI* 

When summing up along the contour and noting that p = - p$, we obtain 

J(Jx, Jy) and M: 

J,=P \ ‘P&/v J,=-p c ‘P dx, ML-+ 
s ~dlz13 

Gc C,‘C c;c 

We shall now consider the variable u. When 
taking into account that at the boundaries of 

integrating by parts and 
the contour $6 = 0, we have 

1 
dv 

1 1 

J,=-P 
s 
* y(u)dudu. J, = P 

s 
z (u) 2 du, &+ 

s 

dq 1 z 12dudu (3.1) 

-1 -1 -1 
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The quantities - Jx, - J , - M may be considered as 
the moment of momentum of t z e fluid and be represented 

- J, z Pll~l i- PlZ~Z + P130 

- J, = PZIDI + ~ma + rxw 

- M = PJIQ I- l~srva -t ~300 

where pik are the coefficients of virtual mass. 

the momentum and 

in the form 

(3.2) 

Comparing (3.2) and 

computation formulas 

0 0.4 06 OB JD 

Fig. 5. 

(3.1) and taking into account (2.8) we obtain the 

Because OS the symmetry p12 = pzl = pz7 = ,uj2 = 0. The remaining 

coefficients are different from zero. 

As an example we shall give the calculated pik for the curves of the 

class L(1, u). Assuming II = 1 in the formulas (2.6). (2.7), according to 

(2.1). (2.5) and (2.8) we find 

dwl A cscv 
du=- x (ctg2v + u2) VI - U2 

xsinv-((iF+2)(1-sinv) u2- 
I 

-u4nsinv+(l--sinv)u (~-~~)In~~+ix(l-sinv~-~~sinv)111/1-~~ 
1 

(3.4) 

dwa A cos v CSC” v u -- 1 
-=- 

du 7X (ctg2 v + u2) VI - u2 
uB (v) - usis sin v + (1 - sinv) (1 - u2) In U-t_1 + 

-- 
+ ix (1 - sin v +- 1t2 sin v) r/l - u2 (3.5) 
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,4 (v) = 2 ctg v (1 - sin v) (v csc2 v - ctg v) + x ctg2 v -k sinv-((secv-l)(cosecv-I)] 

B.(v)-nsccv(cscv-l)(I-+sin2v-cosv-f) 

It is easy to verify that dwl/du, dvg/du satisfy the boundary condi- 

tions (2.3), (2.4) and also the additional requirements of a physical 
nature. 

Assuming 111 = 1 in (1.1). (2.7) we find the equation L(l, v): 
(3.6) 

[ 

u2 
x (Cd) 7?i(1-cscv) 2(1_cscv) +I-V~--U~-/- cscvln 1+1/l-u2sinv 

1 f sin v I 

Y (u) 
lI :Actgv(CSCv-1) ___ - 

[ cscv-1 
arc sin u + 2 set v arc tg 

( 
1-~l-U~tgx-2v 

U -)I 4 

The function dv7/du is not expressible in terms of elementary functions 

and may be found approximately by the use of (2.5), if we expand x(u) and 

y(u) in (2. l), for example, into the series of Legendre polynomials. For 

u = 1 the formulas (3.6) give X, Y of the end of the curve: 

x = A (1 - csc v) I 1 

2 (1 - csc v) 
+f--‘cscvln(1-j-sinv) 1 

Y ==Actgv(CScv-1) i 
[ 
~-+(~-v)secv] 

(3.7) 

csc v - 1 

Finally. integrating (2.6) from 0 to 1 for I = 1, we obtain: 
(3.3) 

s -)t’s [F(sinv. $)--E((sinv, i_)-~zC~zx -~--_29invlncte~,2v~ 

where F and E are complete elliptical integrals of the first and second 

orders. 

Figures 3, 4, and 5 represent correspondingly the families of the 

curves 

X_=l 

( 
y, y 

> 
, y ~ ] ( x (u) Y (CO\ 

-’ 71’ Y 
s_qy, y) 

In Figs. 6, 7 and 8 are given the non-dimensional coefficients of the 
virtual masses as functions of w or of the non-dimensional maximum curva- 

ture of the curve K(n/2)X, K(n/2)Y, K(n/2)S according to (3.3)- (3.8) and 

(1.2). As seen from Figs. 6 and 7, the coefficients ,L~/~X~, pP2/pY2 

practically do not depend upon the curvature of the curves of their corres- 

ponding families X = 1 and Y = 1. i.e. they are determined only by the 
magnitude of the projection of the maximum cross-section of the curve per- 

pendicular to the direction of its impact. This fact serves to explain 
that lim pz2/pY2 = n/2 for v + n/2, a finite number. 

For v -+ 0 the curves Y = 1 and S = 1 represent a vertical plate of 
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Fig. 6. 

length equal to two, placed into a streamlined detached flow. In this 

case, equation (3.3) yields values already known [ 31. 

lJ2* - rz2 - l.mo(; ~ -- 
Qy2 ps'2-- 

For v + n/2 the curves X = 1 and S = 1 represent a plate of unit length 

length bounding streamlined flow on both sides; for this plate according. 

to equation (3.3) we have [ 21 

r11 _ cl11 _ 6 Pa9 _ llss _ 9x _ .- - --- - , . __ - --r _ - __L_ __ _ . 

Qx* Qs* r, Qx' Qi!? 128 

In conclusion we shall note, that in the case of a horizontal impact 
by the curve L(1, ~1, as opposed to a similar impact by the wedge [ 41 , 
the sign of the tangential velocity component of the impulsive flow is 

not changed along the curve when going from the point 0 to C (Fig. 1). 

For the vertical impact by the curve L(1. V) the sign does change. 

I 

1. 
1. 
a 
0 

LJ 

a 
J 

II’ IO- 20’30’40’ 50’ 60’ 70’ 80” 

Fig. 7. Fig. 8. 
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